

Adani Global Indology Conclave

Raga Bhairavi in virtual reality reduces stress-related psychophysiological markers

Kulbhushan Chand¹, Shilpa Chandra², Varun Dutt²

¹ IIT Mandi iHub and HCi Foundation, IIT Mandi

² Indian Knowledge System and Mental Health Applications Centre (IKSMHA), IIT Mandi kulbhushan@tih.iitmandi.ac.in; varun@iitmandi.ac.in

Abstract

The effects of Indian classical music on psychophysiological parameters remain underexplored. This study investigated the impact of listening to *raga Bhairavi* in a virtual reality (VR) environment on anxiety, stress, depression, and heart rate variability (HRV) over six days. Forty-four participants were randomly assigned to either the **VR-raga group**, where they experienced *raga Bhairavi* via 360° video, or the **control group**, which received no exposure. HRV baselines (relax-baseline and stress-baseline) were recorded on the first day, and HRV monitoring, along with the Depression, Anxiety, and Stress Scale (DASS-21) questionnaire, was conducted on the first and sixth days. Results showed significant reductions in **DASS-21 scores** and improved **HRV parameters** in the VR-raga group, suggesting decreased physiological stress and enhanced autonomic balance. These findings support the potential of VR-based *raga Bhairavi* interventions for stress reduction and mental well-being enhancement in real-world applications.

Problem Statement

- **Rising Mental Health Concerns -** Stress, anxiety, and depression affect millions worldwide, highlighting the need for accessible and effective interventions.
- Potential of Music Therapy & VR Indian classical music, especially Raga Bhairavi, has been traditionally linked to relaxation, but its effects remain underexplored. Virtual Reality (VR) can enhance immersion, potentially increasing therapeutic benefits.

• Bridging the Research Gap - Limited studies combine Indian classical music with VR while measuring both psychological (DASS-21) and physiological (HRV) stress markers.

Materials and Methods

Participants - 44 healthy adults (13 women, 31 men, mean age: 24.43 ± 4.18 years) were recruited for the study.

Study Design - A randomized controlled trial (RCT) with two groups: **VR-Raga** (listened to Raga Bhairavi in an immersive 360° VR environment for six days), **Control Group** (no music intervention for six days).

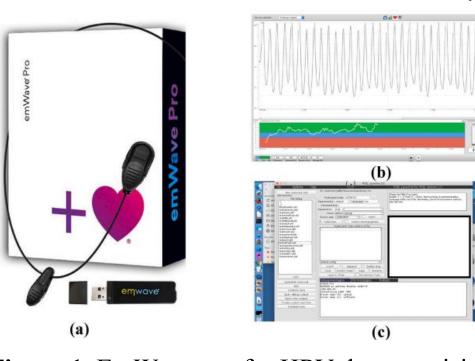
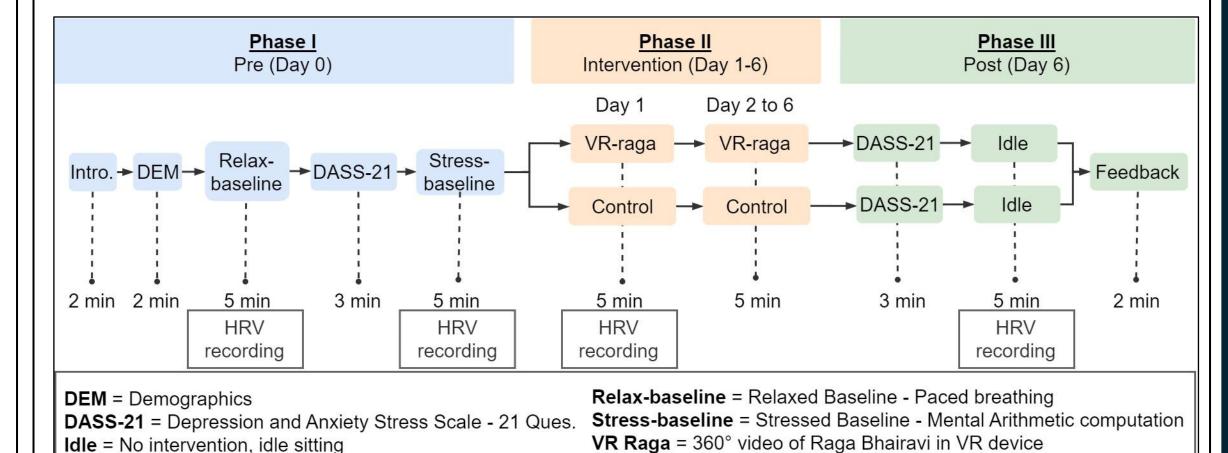
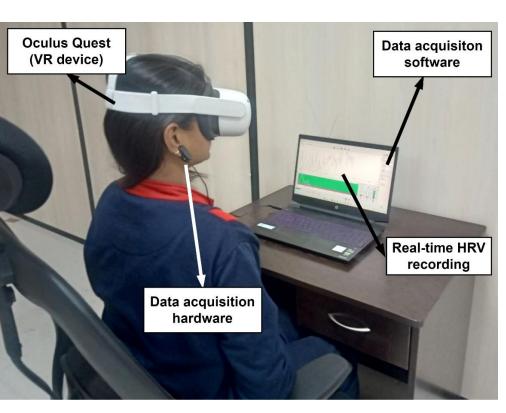


Figure 1. EmWave pro for HRV data acquisition

Figure 2. Oculus Quest 2 for VR presentation




Figure 3. Experiment design

Results and Discussions

Table 1 Descriptive statistics of the DASS subscales

सा ध	
ग म	8K (360)
6 Darba	18:08

Figure 3. Raga Bhairavi performance in a 360° VR environment. [1],[3]

Figure 4. Participant under intervention. [1], [3]

Group	DASS subscale	Pre-intervention (Mean ± SD)	Post-intervention (Mean ± SD)	Post-pre difference (Mean ± SD)
	Stress	12.36 ± 6.61	5.00 ± 2.74	7.36 ± 7.02
VR-raga	Anxiety	9.55 ± 5.62 #	3.91 ± 3.41 $^{\#}$	-5.64 ± 5.88 [#]
	Depression	9.73 ± 6.88 $^{\#}$	3.18 ± 3.13 $^{\#}$	-6.55 ± 7.26
Control	Stress	12.00 ± 8.42 #	10.36 ± 7.45	-1.64 ± 3.30
	Anxiety	7.00 ± 6.78 $^{\#}$	$6.27 \pm 5.25~^{\#}$	-0.73 ± 2.73
	Depression	7.45 ± 6.91 #	6.55 ± 4.83 $^{\#}$	-0.91 ± 4.26 $^{\#}$

Table 2 Baseline corrected (mean \pm SD) values and test statistics of the VR-raga and control groups for HRV parameters at Post-pre (day 6 - day 1)

HRV parameter	VR-raga (Mean ± SD) †	Control (Mean ± SD) †	t or W statistic	p-value	Effect size (dz)
SDNN [↓]	5.19 ± 24.09	-8.44 ± 9.86	-2.46 (42)	0.02*	-0.74 ••
SDHR [↓]	1.45 ± 3.35	-0.7 ± 1.28	-2.82 (42)	0.0074^{*}	-0.85 ••
HTI ↓	1.24 ± 5.86	-2.08 ± 2.62	-2.42 (42)	0.02^{*}	-0.73 ••
LF/HF ↓	3.5 ± 8.19	-0.08 ± 1.39	-2.02 (42)	0.05^{*}	-0.61
RESP [↑]	0.01 ± 0.09	0.03 ± 0.08	0.65 (42)	0.52	0.2 °°
SD2/SD1 ↓	0.57 ± 1.01	-0.06 ± 0.46	-2.66 (42)	0.01*	-0.8 ••
SampEn [↑]	-0.1 ± 0.28	0.02 ± 0.14	1.72 (42)	0.09	0.52 ••

Note: † The values of HRV parameters indicate the mean deviation from the stress-baseline. ↓ The mean value was lower in the control group. † The mean value was higher in the control group. [#] Deviation from the normality. t-test (t) for normal and Wilcoxon test (W) test for non-normal data. * The p value is significant after correcting for multiple comparisons. • Large effect; • Moderate effect; ° Small effect; ° Trivial effect.

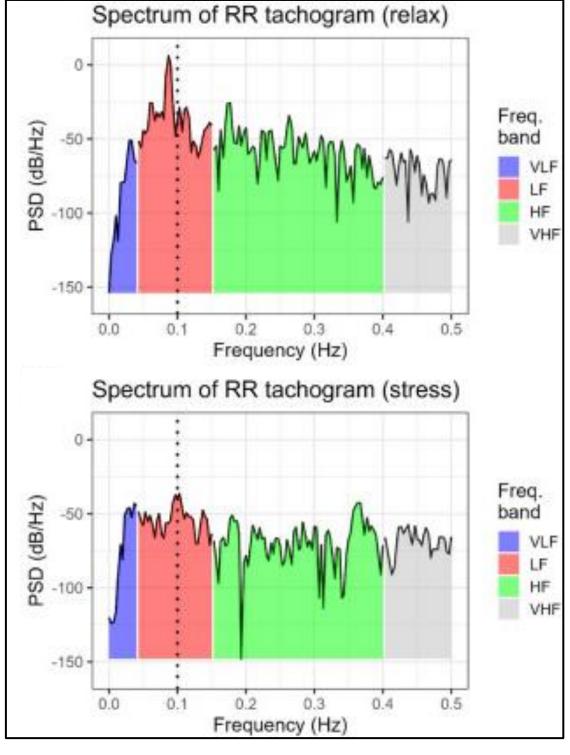


Figure 4. RR tachogram taken during relaxation (top) and stress (bottom). [2]

Conclusion

This study demonstrates the effectiveness of VR-based raga Bhairavi therapy in reducing stress, anxiety, and depression, while improving autonomic balance through HRV modulation. The integration of immersive music therapy in VR offers a non-invasive, accessible, and engaging mental health intervention. Its applications extend beyond clinical settings to workplaces, schools, and telemedicine platforms, making it a scalable solution. Real-time biofeedback could further enhance personalization, optimizing therapeutic outcomes. Future research should explore longer interventions, diverse populations, and alternative musical genres to expand its applicability.

References

- 1. Chand, K., Chandra, S., & Dutt, V. (2024). Raga Bhairavi in virtual reality reduces stress-related psychophysiological markers. Scientific Reports, 14(1), 24816.
- 2. Chand, K., Chandra, S., & Dutt, V. (2024). A comprehensive evaluation of linear and non-linear HRV parameters between Paced Breathing and Stressful Mental State. Heliyon.
- 3. Chandra, S., Chand, K., & Dutt, V. (2023). Impact of Indian Classical Raga in Immersive Environments on Human Psycho-physiological Parameters. In Proceedings of the 16th International Conference on Pervasive Technologies Related to Assistive Environments (PETRA).

Acknowledgement